Las paradojas de la eficiencia de riego asociadas a la tecnificación de zonas de riego
PDF

Palabras clave

efecto rebote
uso sustentable del agua
modernización del riego
ahorro de agua
subsidios para infraestructura hidroagrícola

Cómo citar

Ojeda Bustamante, W., Palerm Viqueira, J., & Muñoz Arriola, F. (2024). Las paradojas de la eficiencia de riego asociadas a la tecnificación de zonas de riego: Cuentos y cuentas. Revista De El Colegio De San Luis, 14(25), 1–41. https://doi.org/10.21696/rcsl142520241598

Resumen

La agricultura de riego es el mayor consumidor de agua en el mundo. La tecnificación de la irrigación recurrentemente forma parte de las políticas públicas subsidiadas para ahorrar agua y ser transferida a otros sectores, como es el caso del proyecto Agua Saludable para La Laguna, en el norte de México. El objetivo de este artículo es revisar las bases científicas y los estudios en los que las paradojas de la eficiencia de riego, hidrológica y de Jevons, se relacionan con la tecnificación de zonas de riego. Se plantea el principio de que eficientizar el riego es una acción bien intencionada; sin embargo, la tecnificación del riego puede producir el efecto contrario al ahorro y fomentar un incremento de la extracción de agua a través de múltiples escalas hidrológicas. Datos hidrológicos y agronómicos preliminares en la Comarca Lagunera indican que la resolución de ambas paradojas requiere de un nuevo marco conceptual sustentado en un análisis riguroso de los flujos de agua superficiales y subterráneos que integre los efectos de la tecnificación de la zona de riego, desde la parcela hasta la cuenca hidrológica.

https://doi.org/10.21696/rcsl142520241598
PDF

Citas

Australian Goverment. (2007). Water Act 2007 (No. 137). https://www.legislation.gov.au/C2007A00137/2021-09-01/text

Ávila, Mayela. (2021, septiembre 1). ‘No los tengo notificados’, más de mil pozos de agua presuntamente irregulares; señala director general de Conagua. Noticieros Grem. https://www.noticierosgrem.com.mx/no-los-tengo-notificados-mas-de-mil-pozos-de-agua-presuntamente-irregulares-senala-director-general-de-conagua/

Banda, Mavuto M.; Heeren, Derek M.; Derrel, Martin; Muñoz-Arriola, Francisco, y Hayde, László G. (2019, julio 7-10). Economic analysis of deficit irrigation in sugarcane farming: Nchalo Estate, Chikwawa District, Malawi [Conferencia presentada]. ASABE Annual International Meeting, Boston, Massachusetts (Paper No. 1900852). https://digitalcommons.unl.edu/biosysengfacpub/607

Burbach, Mark E.; Eaton, Weston M.; Quimby, Barbara; Babbitt, Christina, y Delozier, Jodi L. (2022). Longitudinal assessment of an integrated approach to large-scale common-pool water resource management: a case study of Nebraska’s Platte River basin. Ecology and Society, 27(4), 30. https://doi.org/10.5751/ES-13579-270430

Carrillo, Carlos M.; Muñoz-Arriola, Francisco, y Chen, Liang. (2023). Multi-scale Sources of Precipitation Predictability in the Northern Great Plains. Preprints 2023120362. https://doi.org/10.20944/preprints202312.0362.v1

Carrillo-Guerrero, Yamilett; Glenn, Edward P., e Hinojosa-Huerta, Osvel. (2013). Water budget for agricultural and aquatic ecosystems in the delta of the Colorado River, Mexico: Implications for obtaining water for the environment. Ecological Engineering (59), 41-51. https://doi.org/10.1016/j.ecoleng.2013.04.047

CONAGUA (Comisión Nacional del Agua). (2023a, diciembre 30). Reglas de Operación para el Programa de Apoyo a la Infraestructura Hidroagrícola, a cargo de la Comisión Nacional del Agua, aplicables a partir de 2023. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial. https://www.gob.mx/cms/uploads/attachment/file/788655/REGLAS_DE_OPERACION_HIDROAGRICOLA_30_DIC_2022.pdf

CONAGUA (Comisión Nacional del Agua). (2023b). Base de datos del Registro Público de Derechos de Agua (REPDA). https://app.conagua.gob.mx/consultarepda.aspx

CONAGUA (Comisión Nacional del Agua). (2020). Actualización de la disponibilidad media anual de agua en el acuífero Principal-Región Lagunera (0523), Estado de Coahuila. Comisión Nacional del Agua, Subdirección General Técnica. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/coahuila/DR_0523.pdf

CONAGUA (Comisión Nacional del Agua). (2011). Agenda del Agua 2030. Secretaría de Medio Ambiente y Recursos Naturales.

CONAGUA (Comisión Nacional del Agua). (s/f). Plan Director del Distrito de Riego 017. Comisión Nacional del Agua.

Del Conde, Juan Pablo, y Fuentes, Eduardo Aarón. (2022, noviembre 14). Proyecto Agua Saludable para La Laguna: un paso para recuperar la seguridad hídrica en la región lagunera. Diálogo con ingenieros [video]. CICM Oficial. Colegio de Ingenieros Civiles de México. YouTube. https://www.youtube.com/live/S4HVX-Td9UQ

Di Baldassarre, Giuliano; Sivapalan, Murugesu; Rusca, Maria; Cudennec, Christophe; García, Margaret; Kreibich, Heidi; Konar, Megan; Mondino, Elena; Mard, Johanna; Pande, Saket; Sanderson, Matthew; Tian, Fuqiang; Viglione, Alberto; Wei, Jing; Wei, Yongping; J. Yu, David; Srinivasan, Veena, y Blöschl, Günter. (2019). Sociohydrology: Scientific challenges in addressing the sustainable development goals. Water Resources Research (55), 6327-6355. https://doi.org/10.1029/2018WR023901

EC (European Commission). (2015a). The Water Framework Directive and the Floods Directive: Actions towards the ‘good status’ of EU water and to reduce flood risks. Commission Staff Working Document. Report on the implementation of the Water Framework Directive River Basin Management Plans. Member State: SPAIN [SWD (2015) 56 final]. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015SC0056&qid=1694710954575

EC (European Commission). (2015b). Guidance document on the application of water balances for supporting the implementation of the WFD. Final – Version 6.1. – 18/05/2015. European Union. https://data.europa.eu/doi/10.2779/352735

EC (European Commission). (2012). A Blueprint to Safeguard Europe’s Water Resources. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions [COM (2012) 673 final]. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52012DC0673&from=EN

Espinosa, Carlos. (2021). Proyecto Ejecutivo: Agua Saludable para La Laguna. Abastecimiento de Agua Potable a la Región Lagunera. Comisión Nacional del Agua, Consejo Estatal de Ciencia y Tecnología, Consorcio de Redes de Innovación Cooperativa y Red de Agua y Recursos Ambientales. https://docplayer.es/215262642-Proyecto-ejecutivo-agua-saludable-para-la-laguna-abastecimiento-de-agua-potable-a-la-region-lagunera.html

Fernald, Alexander; Guldan, Steven; Boykin, Kris; Cibils, Andrés; Gonzáles, Melinda; Hurd, Brian; López, Sandra; Ochoa, Clara; Ortiz, María; Rivera, Josue; Rodríguez, Stephanie, y Steele, Christen. (2015). Linked hydrologic and social systems that support resilience of traditional irrigation communities. Hydrology and Earth System Sciences, 19(1), 293-307. https://doi.org/10.5194/hess-19-293-2015

Flores, Lourdes. (2023, septiembre 3). Estados tienen hasta 50% de fugas en agricultura de riego: Consejo Consultivo del Agua. El Economista. https://www.eleconomista.com.mx/estados/Estados-tienen-hasta-50-de-fugas-en-agricultura-de-riego-Consejo-Consultivo-del-Agua-20230903-0019.html

Ghosh, Kausik, y Muñoz-Arriola, Francisco. (2023). Hysteresis and streamflow-sediment relations across the pre-to-post dam construction continuum in a highly regulated transboundary Himalayan River basin. Journal of Hydrology (624), 129885. https://doi.org/10.1016/j.jhydrol.2023.129885

Gobierno del Estado de Aguascalientes. (2022, julio 19). Plan Hídrico Estatal 2021-2050. Periódico Oficial del Estado de Aguascalientes, Tomo XXIII, Número 38. eservicios2.aguascalientes.gob.mx/PeriodicoOficial/Archivos/9232.pdf

Gobierno del Estado de Chihuahua. (2022). Plan Estatal Hídrico 2040. Junta Central de Agua y Saneamiento del Estado de Chihuahua. https://www.jcas.gob.mx/peh2040/

Gobierno del Estado de México. (2018). Programa Hídrico Integral del Estado de México 2017-2023. Gobierno del Estado de México, Secretaría del Agua del Estado de México, Comisión del Agua del Estado de México. https://agua.edomex.gob.mx/sites/agua.edomex.gob.mx/files/files/AcercaCAEM/PHIEM1.pdf

Gobierno del Estado de Morelos. (s/f). Programa Hídrico del Estado de Morelos 2019-2024. Comisión Estatal del Agua, Coordinación Técnica. https://www.hacienda.morelos.gob.mx/images/docu_planeacion/planea_estrategica/programas_sectoriales/2019-2024/Programa_estatal_hidrico.pdf

Gómez, Carlos, y Pérez, Dionisio. (2014). Simple Myths and Basic Maths About Greening Irrigation. Water Resources Management (28), 4035-4044. https://doi.org/10.1007/s11269-014-0725-9

Gómez, Carlos, y Pérez, Dionisio. (2013, abril 8-10). Myths and Maths of Water Efficiency: An Analytical Framework to Assess the Real Outcome of Water Saving Technologies in Irrigation 2013 [Conferencia presentada]. 87th Annual Conference of the Agricultural Economics Society, University of Warwick, Coventry, United Kingdom.

González Villarreal, Fernando; Vázquez, Eduardo; Aguilar, Enrique, y Arriaga, Jorge Alberto. (2022). Perspectivas del agua en México: propuestas hacia la seguridad hídrica. Centro Regional de Seguridad Hídrica-UNESCO, Red del Agua-UNAM. http://www.agua.unam.mx/assets/pdfs/Perspectivas_AguaenMexico2022.pdf

Grafton, R. Quentin. (2019). Policy review of water reform in the Murray-Darling Basin, Australia: the “do’s” and “do’nots”. Australian Journal of Agricultural and Resource Economics (63), 116-141. https://doi.org/10.1111/1467-8489.12288

Grafton, R. Quentin, y Wheeler, Sarah Ann. (2018). Economics of water recovery in the Murray-Darling Basin, Australia. Annual Review of Resource Economics (10), 487-510. https://doi.org/10.1146/annurev-resource-100517-023039

Grafton, R. Quentin; Williams, John; Perry, C. J.; Molle, François; Ringler, Claudia; Steduto, Pasquale; Udall, Bradley; Wheeler, Sarah Ann; Wang, Yi; Garrick, Dustin, y Allen, Richard G. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748-750. https://doi.org/10.1126/science.aat9314

Guzmán Gómez, Elsa, y Guzmán Ramírez, Nohora Beatriz. (2017). Conocimientos y adaptaciones tecnológicas en Los Altos de Morelos. Universidad Autónoma del Estado de Morelos.

Hernández-Rodríguez, María de Lourdes. (2006). El uso del agua subterránea en la agricultura del estado de Tlaxcala. En Ignacio Ocampo, J. Francisco Escobedo y Benito Ramírez-Valverde (eds.), El agua: recurso en crisis (pp. 137-146). Colegio de Postgraduados Campus Puebla, Fundación Produce Puebla.

Hoffmann, Patrick, y Villamayor-Tomas, Sergio. (2023). Irrigation modernization and the efficiency paradox: a meta-study through the lens of Networks of Action Situations. Sustainability Science (18), 181-199. https://doi.org/10.1007/s11625-022-01136-9

Huffaker, Ray G., y Whittlesey, Norman K. (1995). Agricultural Water Conservation Legislation: Will it save water? Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, 10(4), 1-5. https://doi.org/10.22004/ag.econ.131316

Jägermehr, Jonas; Gerten, Dieter; Heinke, Jens; Schaphoff, Sibyll; Kummu, Matti, y Lucht, Wolfgang. (2015). Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences (19), 3073-3091. https://doi.org/10.5194/hess-19-3073-2015

Jaimes-Correa, Juan Carlos; Muñoz-Arriola, Francisco, y Bartelt-Hunt, Shannon. (2022). Modeling water quantity and quality nonlinearities for watershed adaptability to hydroclimate extremes in agricultural landscapes. Hydrology, 9(5), 80. https://doi.org/10.3390/hydrology9050080

Jensen, Marvin E. (2007). Beyond irrigation efficiency. Irrigation Science (25), 233-245. https://doi.org/10.1007/s00271-007-0060-5

Lankford, Bruce; Closas, Alvar; Dalton, James; López, Elena; Hess, Tim; Knox, Jerry W.; Van der Kooij, Saskia; Lautze, Jonathan; Molden, David; Orr, Stuart; Pittock, Jamie; Richter, Brian; Riddell, Philip; Scott, Christopher; Venot, Jean-Philippe; Vos, Jeron, y Zwarteveen, Margreet. (2020). A scale-based framework to understand the promises, pitfalls and paradoxes of irrigation efficiency to meet major water challenges. Global Environmental Change (65), 102182. https://doi.org/10.1016/j.gloenvcha.2020.102182

Lonsdale, Whitney R.; Cross, Wyatt F.; Dalby, Charles E.; Meloy, Sara E., y Schwend, Ann C. (2020). Evaluating Irrigation Efficiency: Toward a sustainable water future for Montana. Montana University System Water Center, Montana State University. https://doi.org/10.15788/mwc202011

MacDonnell, Lawrence. (2012). Montana v. Wyoming: Sprinklers, Irrigation Water Use Efficiency and the Doctrine of Recapture. Golden Gate University Environmental Law Journal, 5(2), 2691099. http://dx.doi.org/10.2139/ssrn.2691099

McMillan, Hilary K.; Gnann, Sebastian J., y Araki, Ryoko. (2022). Large scale evaluation of relationships between hydrologic signatures and processes. Water Resources Research (58), e2021WR031751. https://doi.org/10.1029/2021WR031751

Meredith, Elizabeth, y Blais, Nicole. (2019). Quantifying irrigation recharge sources using groundwater modeling. Agricultural Water Management (214), 9-16. https://doi.org/10.1016/j.agwat.2018.12.032

Milly, P. C. D.; Betancourt, Julio; Falkenmark, Malin; Hirsch, Robert; Kundzewicz, Zbigniew; Lettenmaier, Dennis, y Stouffer, Ronald. (2008). Stationarity is dead: Whither water management? Science, 319(5863), 573-574. https://www.law.berkeley.edu/files/CLEE/Milly_2008_Science_StationarityIsDead.pdf

Muñoz-Arriola, Francisco; Abdel-Monem, Tarik, y Amaranto, Alessandro. (2021). Common pool resource management: Assessing water resources planning for hydrologically connected surface water and groundwater systems. Hydrology, 8(1), 8010051. https://doi.org/10.3390/hydrology8010051

Muñoz-Arriola, Francisco; Avissar, Ronni; Zhu, Chunmei, y Lettenmaier, Dennis P. (2009). Sensitivity of the water resources of Rio Yaqui Basin, Mexico, to agriculture extensification under multiscale climate conditions. Water Resources Research, 45(11), 1-13. https://doi.org/10.1029/2007WR006783

Muñoz-Arriola, Francisco; Carriquiry-Beltran, José Domingo; Nieto-García, Edwina, y Hernández-Ayon, Martín. (1999). Colorado River Delta. En S. V. Smith, J. I. Marshall y C. J. Crossland (comps.), Mexican and Central American Coastal Lagoon Systems: Carbon, Nitrogen and Phosphorus Fluxes (pp. 59-69). Land-Ocean Interactions in the Coastal Zone Core Project of the IGBP (LOICZ Reports and Studies, 13).

Ochoa, Carlos G.; Fernald, Alexander G.; Guldan, Steven J., y Shukla, Manoj K. (2007). Deep percolation and its effects on shallow grounwater level rise following flood irrigation. Transactions of the ASABE, 50(1), 73-81. https://wcrg.nmsu.edu/northern-nm-water-research/documents/deep-percolation-and-its-effects-on-shallow-groundwater-rise-following-flood-irrigation_ochoa-et-al-2007.pdf

Ochoa, Carlos G.; Guldan, Steve J., y Fernald, Sam. (2020). Surface Water and Groundwater Interactions in Acequia Systems of Northern New Mexico. En Adrienne Rosenberg y Steven Guldan (eds.), Acequias of the Southwestern United States: Elements of resilience in a coupled natural and human system (pp. 33-40). New Mexico State University, Agricultural Experiment Station. Research Report 796.

Ojeda, Waldo, e Íñiguez, Mauro. (2015). Capítulo 3. El agua en el suelo. En Waldo Ojeda y Jorge Flores (eds.), Calendarización del riego: teoría y práctica (pp. 61-71). Instituto Mexicano de Tecnología del Agua. http://repositorio.imta.mx/handle/20.500.12013/2177

Ou, Gengxin; Muñoz-Arriola, Francisco; Uden, Daniel R.; Martin, Derrel; Allen, Craig R., y Shank, Nancy. (2018). Climate change implications for irrigation and groundwater in the Republican River Basin, USA. Climatic Change (151), 303-316. https://doi.org/10.1007/s10584-018-2278-z

Pérez-Blanco, Carlos Dionisio; Loch, Adam; Ward, Frank; Perry, Chris, y Adamson, David. (2021). Agricultural water saving through technologies: a zombie idea. Environmental Research Letters (16), 114032. https://doi.org/10.1088/1748-9326/ac2fe0

Pérez-Blanco, Carlos Dionisio; Hrast-Essenfelder, Arthur, y Perry, Chris. (2020). Irrigation technology and water conservation: a review of the theory and evidence. Review of Environmental Economics and Policy, 14(2), 216-239. http://dx.doi.org/10.1093/reep/reaa004

Pérez-Morga, Nancy; Kretzshmar, Thomas; Cavazos, Tereza; Smith, Stephen V., y Muñoz-Arriola, Francisco. (2013). Variability of extreme precipitation in coastal River Basins of the Southern Mexican Pacific Region. Geofisica Internacional, 52(3), 277-291. https://doi.org/10.1016/S0016-7169(13)71477-6

Perry, Chris. (2007). Efficient irrigation; inefficient communication; flawed recommendations. Irrigation and Drainage (56), 367-378. https://doi.org/10.1002/ird.323

Perry, Chris. (1999). The IWMI water resources paradigm – Definitions and implications. Agricultural Water Management, 40(1), 45-50. https://doi.org/10.1016/S0378-3774(98)00102-4

Perry, Chris; Steduto, Pasquale, y Karajeh, Fawzi. (2017). Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations. www.fao.org/3/i7090en/I7090EN.pdf

Pfeiffer, Lisa, y Lin, C. Y. Cynthia. (2014). Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Journal of Environmental Economics and Management, 67(2), 189-208. http://dx.doi.org/10.1016/j.jeem.2013.12.002

Pierre, Séraphin; Vallet-Coulomb, Christine, y Gonçalvès, Julio. (2016). Partitioning groundwater recharge between rainfall infiltration and irrigation return flows using stable isotopes: The Crau Aquifer. Journal of Hydrology (542), 241-253. http://dx.doi.org/10.1016/j.jhydrol.2016.09.005

Pisanty, Julieta. (2003). Evaluación ambiental sectorial del Proyecto de Modernización Integral de Riego (PMIR). Banco Mundial, Comisión Nacional del Agua.

Rodríguez-Díaz, Juan Antonio; Pérez-Urrestarazu, Luis; Camacho-Poyato, Emilio, y Montesinos, Pilar. (2011). The paradox of irrigation scheme modernization: more efficient water use linked to higher energy demand. Spanish Journal of Agricultural Research, 9(4), 1 000-1008. http://dx.doi.org/10.5424/sjar/20110904-492-10

Romanelli, Thiago L.; Muñoz-Arriola, Francisco, y Colaço, Andre F. (2022). Conceptual framework to integrate economic drivers of decision making for technology adoption in agriculture. Engineering Proceedings, 9(1), 43. https://doi.org/10.3390/engproc2021009043

Rotiroti, Marco; Bonomi, Tullia; Sacchi, Elisa; McArthur, John M.; Stefania, Gennaro A.; Zanotti, Chiara; Taviani, Sara; Patelli, Martina; Nava, Veronica; Soler, Valentina; Fumagalli, Letizia, y Leoni, Barbara. (2019). The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system: The Oglio River basin, Po Plain, Northern Italy. Science of the Total Environment (672), 342-356. https://doi.org/10.1016/j.scitotenv.2019.03.427

Sanchis-Ibor, Carles; Boelens, Rutgerd, y García-Mollá, Marta. (2017). Collective irrigation reloaded. Recollection and re-moralization of water management after privatization in Spain. Geoforu (87), 38-47. https://doi.org/10.1016/j.geoforum.2017.10.002

Sarzaeim, Parisa; Ou, Wengi; Alves, Luciano, y Muñoz-Arriola, Francisco. (2021). Flood-Risk Analytics for Climate-Resilient Agriculture Using Remote Sensing in the Northern High Plains. En Christopher L. Meehan, Miguel A. Pando, Ben A. Leshchinsky y Navid H. Jafari (eds.), Geo-Extreme 2021 (pp. 234-244). American Society of Civil Engineers. https://doi.org/10.1061/9780784483695.023

Scott, Christopher A.; Vicuña, Sebastian; Blanco-Gutiérrez, Irene; Meza, Francisco, y Varela-Ortega, Consuelo. (2014). Irrigation efficiency and water-policy implications for river-basin resilience. Hydrology and Earth System Sciences, 18(4), 1339-1348. https://doi.org/10.5194/hess-18-1339-2014

Sears, Louis; Caparelli, Joseph; Lee, Clouse; Pan, Devon; Strandberg, Gillian; Vuu, Linh, y Lin Lawell, C. Y. Cynthia. (2018). Jevons’ Paradox and Efficient Irrigation Technology. Sustainability, 10(5), 1590. https://doi.org/10.3390/su10051590

Seckler, David. (1996). The New Era of water resources management: From “dry” to “wet” water savings. International Irrigation Management Institute (Research Report, 1). https://www.iwmi.cgiar.org/Publications/IWMI_Research_Reports/PDF/pub001/REPORT01.PDF

SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). (2022, diciembre 30). Decreto por el que se aprueba el Programa Nacional Hídrico 2020-2024. Diario Oficial de la Federación. https://www.gob.mx/cms/uploads/attachment/file/642632/PNH_2020-2024__ptimo.pdf

Shekhar, Shashi; Colletti, Joe; Muñoz-Arriola, Francisco; Ramaswamy, Lakshmish; Krintz, Chandra; Varshney, Lav, y Richardson, Debra. (2017). Intelligent infrastructure for smart agriculture: An integrated food, energy and water system. CoRR abs/1705.01993. https://doi.org/10.48550/arXiv.1705.01993

Stuart, Laurent; Hobbins, Mike; Niebuhr, Emily; Ruane, Alex C.; Pulwarty, Roger; Hoell, Andrew; Thiaw, Wassila; Rosenzweig, Cynthia; Muñoz-Arriola, Francisco; Jahn, Molly, y Farrar, Michael. (2024). Enhancing Global Food Security: Opportunities for the American Meteorological Society. Bulletin of the American Meteorological Society, 105(4), 760-777. https://doi.org/10.1175/BAMS-D-22-0106.1

Tarasova, Larisa; Gnann, Sebastian; Yang, Soohyun; Hartmann, Andreas, y Wagener, Thorsten. (2024). Catchment characterization: Current descriptors, knowledge gaps and future opportunities. Earth-Science Reviews (252), 104739. https://doi.org/10.1016/j.earscirev.2024.104739

Tarjuelo, José M.; Rodríguez-Díaz, Juan A.; Abadía, Ricardo; Camacho, Emilio; Rocamora, Carmen, y Moreno, Miguel A. (2015). Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agricultural Water Management (162), 67-77. https://doi.org/10.1016/j.agwat.2015.08.009

Tulip, Shibli Sadik; Siddik, Sifat; Islam, Nazrul; Rahman, Atikur; Torabi Haghighi, Ali, y Mustafa, Syed. (2022). The impact of irrigation return flow on seasonal groundwater recharge in northwestern Bangladesh. Agricultural Water Management (266), 107593. https://doi.org/10.1016/j.agwat.2022.107593

Uden, Daniel R.; Allen, Craig R.; Muñoz-Arriola, Francisco; Ou, Gengxin, y Shank, Nancy. (2018). A framework for tracing social-ecological trajectories and traps in intensive agricultural landscapes. Sustainability, 10(5), 1646. https://doi.org/10.3390/su10051646

Van Halsema, Gerardo E., y Vincent, Linden. (2012). Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism. Agricultural Water Management (108), 9-15. https://doi.org/10.1016/j.agwat.2011.05.016

Volk, John M.; Huntington, Justin L.; Melton, Forrest S.; Allen, Richard; Anderson, Martha; Fisher, Joshua; Kilic, Ayse; Ruhoff, Anderson; Senay, Gabriel; Minor, Blake; Morton, Charles; Ott, Thomas; Johnson, Lee; Comini, Bruno; Carrara, Will; Doherty, Conor; Dunkerly, Christian; Fridrichs, MacKenzie; Guzmán, Alberto; Hain, Christopher; Halverson, Gregory; Kang, Yanghui; Knipper, Kyle; Laipelt, Leonardo; Yang, Yun; Ortega-Salazar, Samuel; Pearson, Christopher; Parrish, Gabriel; Purdy, Adam; ReVelle, Peter, y Wang, Tianxin. (2024). Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nature Water (2), 193-205. https://doi.org/10.1038/s44221-023-00181-7

Von Schneidemesser, Erika; Melamed, Megan, y Schmale, Julia. (2020). Prepare Scientists to Engage in Science‐Policy. Earth’s Future, 8(11), e2020EF001628. https://doi.org/10.1029/2020EF001628

Wang, Quan J.; Walker, Glen, y Horne, Avril. (2018). Potential impacts of groundwater sustainable diversion limits and irrigation efficiency projects on river flow volume under the Murray-Darling Basin Plan. An independent review. University of Melbourne, Melbourne School of Engineering Water, Agriculture and Environment Program. https://www.mdba.gov.au/sites/default/files/publications/impacts-groundwater-and-efficiency-programs-on-flows-october-20180.pdf

Ward, Frank A., y Pulido-Velázquez, Manuel. (2008). Water conservation in irrigation can increase water use. PNAS: Proceedings of the National Academy of Sciences, 105(47), 18215-18220. https://doi.org/10.1073/pnas.0805554105

Wheeler, Sarah A.; Carmody, Emma; Grafton, Quentin; Kingsford, Richard T., y Zuo, Alec. (2020). The rebound effect on water extraction from subsidising irrigation infrastructure in Australia. Resources, Conservation & Recycling (159), 104755. https://doi.org/10.1016/j.resconrec.2020.104755

Willardson, Lyman S.; Allen, Richard G., y Frederiksen, Harald Dixen. (1994, octubre 19-22). Eliminating irrigation efficiencies [Conferencia presentada]. 13th Technical Conference, USCID, Denver, Colorado. https://www.researchgate.net/publication/253580547_Eliminating_Irrigation_Efficiencies

Williams, John, y Grafton, R. Quentin. (2019). Missing in action: possible effects of water recovery on stream and river flows in the Murray-Darling Basin, Australia. Australasian Journal of Water Resources, 23(2), 78-87. https://doi.org/10.1080/13241583.2019.1579965

Wilson, Anna; Cifelli, Rob; Muñoz-Arriola, Francisco; Giovannettone, Jason; Vano, Julie; Parzybok, Tye; Dufour, Alexis; Jasperse, Jay; Mahoney, Kelly, y McCormick, Bill. (2021). Efforts to Build Infrastructure Resiliency to Future Hydroclimate Extremes. En Christopher L. Meehan, Miguel A. Pando, Ben A. Leshchinsky y Navid H. Jafari (eds.), Geo-Extreme 2021 (pp. 222-233). American Society of Civil Engineers. https://doi.org/10.1061/9780784483695.022

Xiong, Rui; Zheng, Yi; Han, Feng, y Tian, Yong. (2021). Improving the scientific understanding of the Paradox of Irrigation Efficiency: An integrated modeling approach to assessing basin-scale irrigation efficiency. Water Resources Research (57), e2020WR029397. https://doi.org/10.1029/2020WR029397

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Revista de El Colegio de San Luis

Descargas

Los datos de descargas todavía no están disponibles.